Recommending attractive thematic regions by semantic community detection with multi-sourced VGI data

Abstract

Attractive regions can be detected and recommended by investigating users’ online footprints. However, social media data suffers from short noisy text and lack of a-priori knowledge, impeding the usefulness of traditional semantic modelling methods. Another challenge is the need for an effective strategy for the selection/recommendation of candidate regions. To address these challenges, we propose a comprehensive workflow which combines semantic and location information of social media data to recommend thematic urban regions to users with specific interests. This workflow is novel in:(1) developing a data-driven geographic topic modelling method which utilizes the co-occurrence patterns of self-explanatory semantic information to detect semantic communities; (2) proposing a new recommendation strategy with the consideration of region’s spatial scale. The workflow was implemented using a real-world dataset and evaluation conducted at three different levels:semantic representativeness, topic identification and recommendation desirability. The evaluation showed that the semantic communities detected were internally consistent and externally differentiable and that the recommended regions had a high degree of desirability. The work has demonstrated the effectiveness of self-explanatory semantic information for geographic topic modelling and highlighted the importance of including region spatial scale into the model for an effective region recommending strategy.

Publication
International Journal of Geographical Information Science, 33(8): 1520-1544
Zhewei Liu
Zhewei Liu

My research interests include spatial big data analytics, volunteered geographic information, human mobility.

Related